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This work discusses the equilibrium distribution of impurity atoms among different 
sinks and the matrix of a real crystal. A simple formula, interpolating the McLean 
formula is obtained. Impurity segregation in crystals, containing two types of sinks (e.g. 
grain boundaries and dislocations) is investigated. Impurity concentration on a weakly- 
binding sink (grain boundary) as a function of the temperature, 7", may be represented 
by a curve, the shape of which depends on the ratio of the average impurity concen- 
tration and the relative volume of a strongly-binding sink (dislocation) and on the ratio 
of the binding energies of an impurity atom on different sinks. There are four possible 
shapes of the curve. Three of them are not monotonic and show a maximum at T = Tmax. 
One of these three also exhibits a minimum at T = Tmi n < Tma x . This may be used to 
diminish the content of a "harmful" impurity on the grain boundaries. 

1. Introduction 
The impurity atoms in a real crystal are distributed 
inhomogeneously. They segregate on different 
sinks which may be grain and subgrain boundaries: 
dislocations, stacking faults, etc. This influences 
different physical (in particular, mechanical) 
properties. The first theory to consider the distri- 
bution of the impurity atoms among the bulk and 
the boundary area was performed by McLean [1]. 
McLean and further authors used the following 
assumptions: (a)a sink (e.g. boundary) has a 
definite number of positions which may be occu- 
pied by the impurity atoms; (b) the free energy of 
an impurity atom in a sink differs from that in 
the matrix and both energies are independent of 
the concentration of the impurity; (c) the inter- 
action energy of the impurity atoms (both in a 
sink and the matrix) is neglected. 

Notwithstanding the simplicity of this model, 
it takes into account the main features of the 
problem, so it was used as the basis of a series ot 
works on the influence of the equilibrium segre- 
gation upon the condition of grain boundaries in 
one- and two-phased solid solutions, e.g., a com- 
petitive grain boundary segregation of two 
impurities was investigated on the basis of the 
McLean's model [2]. An equilibrium segregatio~ 

of an impurity on a series of sinks simultaneously~ 
in a crystal, a competitive segregation of a series of 
impurities on a sink of a f't~ed volume and a segre- 
gation in two-phased systems were also considered, 
in [3]. It was shown that an equilibrium concen- 
tration of different impurities on the grain bound- 
aries as a function of the temperature is not 
monotonic if: (i) there are dislocations in a crystal 
and the binding of an impurity atom to a dis- 
location is stronger than that to a grain bound- 
ary; (ii) there is another impurity, which is bound 
to a grain boundary more strongly than that of 
the considered impurity and (iii) a system is a two- 
phased one. Another result obtained is that the 
temperature of disintegration and the content of 
an impurity in the grain boundaries depends 
essentially on the size of a grain if the solubility 
of the impurity is rather small. 

In the present work an equilibrium distribution 
of the impurity atoms between two types of sinks 
is more completely investigated on the basis of the 
McLean approximation. 

An equilibrium distribution of the impurity 
atoms may be achieved if the atomic mobility is 
considerable. For the more usual heavy impurities 
this is so only if the temperature is high enough, 
and equilibration may take place during e.g. an 
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annealing. As for the very light impurities, their 
atomic mobility is high enough down to very low 
temperatures, leading to the rapid equilibration of 
the system. 

2. Modification of the McLean relation 
An equilibrium segregation of the impurity atoms 
on one sink (for example, a grain boundary), hav- 
ing a binding energy per impurity atom, F, may be 
described by the McLean formula, 

Cra exp (F/kT) 
C1 = 1 + Cm[exp (F/kT)--  1]' (1) 

where Cl and C m are the impurity atomic concen- 
tration on a sink and in the matrix respectively, and 
kT is the temperature in units of energy. Usually 
the value of an average concentration of the 
impurity atoms in a sample Co is known. There- 
fore it is convenient to express C1 as a function 
of Co (instead of Cm). For the case when both in 
the sink and in the  matrix the numbers of the 
positions which may be occupied by impurity 
atoms (per unit volume) are equal, one may write 

Clql + Cm(1 - -q l )  = Co, (2) 

where ql = V1/V is the ratio of the volume of a 
sink, V1, to the total volume of a sample, V. The 
two equations given may be used to determine 
C1 = CI(T, Co). This was done for the general 
case in [3]. However, the general formula is rather 
complicated. Now we have noticed that for the 
rather general case of ql "~ 1 a simple convenient 
interpolation formula may be used: 

Co exp (F/kT) 
C1 = l +(Co+ql ) [exp (F /kT) - - l ] "  (3) 

This expression satisfactorily describes the depen- 
dence of C1 on T and Co for all values of the par- 
ameters save Co ~- q 1 at exp (F/kT) ~ 1 (low tem- 
peratures). 

3. One impurity and two sinks 
The spatial distribution of the impurity atoms in 
an inhomogeneous crystal is generally given by the 
formula [4] 

Cm exp [F(r)/kT] 
C(r) = 1 + Cm{exp [F(r) /kT]-  1}' (4) 

where C(r) is an atomic concentration of the 
impurity atoms, and the binding energy per one 
impurity atom F(r) is generally a function of 

C(r). The constant Cm is determined by the con- 
dition 

( C ( r )  dV = CoV. (5) 
v) 

The number of positions per unit volume for the 
impurity atoms in the sinks will be regarded as 
equal to that of the matrix as before. 

Let us consider a crystal, containing two sinks 
of a fixed volume having binding energies for an 
impurity atom of F1 and F2 respectively (~r 
1 refers to grain boundaries and 2 refers to dis- 
locations). Let the impurity concentration on the 
first sink be C1 "~ 1, and 6"2 be arbitrary. This may 
be realised if F2 > F1 at not too low temperatures 
and C0~ 1, or i fF2>F1 and ql>>Co at arbitrary 
T and Co. An equilibrium segregation in this case 
according to the McLean's model is described by 
the following equations 

c1 = CmA1, (6) 

c2 = CmA2/[I + Cm(A2-- 1)], (7) 
and 

qlCl +q2C2 +(1- -q l - -q2 )Cm = Co, (8) 

where A i = exp (Fi/kT), / = 1 or 2. Equations 6 to 
8 yield 

C2 = (1 + (Co + q2)(A2 - -  1) + ql(Al - -  1) 

-- {[1 + (Co + q2)(A2 -- 1) 

+ ql(A1 -- 1)]2--4Coq2A2 

x ( A 2 -  1)}'/2)[2q2(A2- 1)1-1, (9) 
and 

C1 = A,( (Co--q2)(A2-  1 ) - - a t ( A , -  1) 

- -  1 + {[1 + [1 + (Co + q2)(A2 -- 1) 

+ ql(A1 -- 1)] 2 -- 4Coq2A2 

• (A2-  1)}'/2){2(A2- 1) 

x [1 --q2 + q , ( A , -  1)]}-'. (10) 

Analysis of the Equation 9 yields the mono- 
tonic decrease in C2 as T increases, Co being the 
asymptotic limit for C2 at T ~ r At T--> 0 

C2 ~ (Co+q2--lCo--q2l)/2q2. (11) 

Using Equation 11, it can quite easily be seen that 
C2 -~ 1 if Co >1 q2 and C2 "* (Co~q:) < 1 at Co < q2 
as T-* O. 

At Co/> q2 the number of the impurity atoms 
equals or exceeds the number of the positions for 
them on the strongly binding second sink. So, 
according to the McLean model all positions will 
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be occupied when T-+ 0. At Co < q2 on the con- 
trary, the number of positions for the impurity 
atoms exceeds their number. Hence the concen- 
tration of the impurity atoms on the second sink 
remains less than 1 even if all impurity atoms are 
gathered on the strongly-binding sink. 

Equation 10 represents the impurity atomic 
concentration on the weakly-binding sink as a 
function of temperature. The limit of the small Co 
has been treated in [3]. There, it was shown that 
Ca was not a monotonic function of T as it had a 
maximum. This may be easily understood. At high 
temperature the impurity atomic concentration on 
the sinks and the matrix tends to Co; C~ and C2 
remain > Co. At low temperatures and Co < q2 all 
the impurity atoms occupy the strongly-binding 
sink, i.e., C1 -+ 0 at T o  0. Hence CI(T) has a 
maximum. In the case when Co < q2, apparently 
also (as in a case when Co'q2) CI(T)-+ 0 if 
T-+0 and has a maximum at T =  Tma x (see 
Equation 20). 

To analytically investigate C1 as a function of 
T let us use the approximation A~,A2 >> 1 and 
ql,q2.~l. The second inequalities are always 
satisfied. The first ones are usually fulfilled. So, 
for example, for carbon impurities in polycrystal. 
line molybdenum containing dislocations (FI -~ 
0.44eV, F 2 = 1.2eV) at T = 2 0 0 0 K  we have 
A1 = 12.85,A2 = 1057.A1 and A=steeplyincrease 
as the temperature decreases. 

4. Relatively low temperatures 
Let us begin with an investigation of  CI(T) in the 
low temperature range, restricted by the following 
inequality. 

ICo--;q21A2 >> 1 +qlA1. (12) 

Using this approximation one may get: 

C1 - 2(1 +qlA1)  --qz + leo--q21 

Co+q2--1Co--q2[ l +qlAl.~ + 
leo--q21 x - - - . A :  ] "  

(13) 

The two cases Co<q2 and Co>q2 should be 
regarded separately as before. For Co<q2 we 
have 

(A1/A2)Co 
C1 - (14) 

(q~ - Co) 
This formula yields C1 = 0 at T = 0 and a mono- 
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tonic increase in C1 along with that in T. For 
Co> q2 Equation 13 yields 

At(Co--q2)_t (al/a2)q2 (15) 
C1 (1 + qlA1) (Co- q2)" 

At T-+ 0 the impurity atoms occupy all available 
positions on the strongly-binding sink and the 
surplus impurity atoms go to the weakly-binding 
sink. Accordingly, at T = 0, Equation 15 yields 
C,=(Co--q2)/ql. As the temperature rises, 
some of the impurity atoms leave the weakly- 
binding sink for the matrix. This amount is deter- 
mined by the factor A, = exp (F1/kT). Simul- 
taneously some of the impurity atoms leave the 
strongly-binding sink for the weakly-binding 
one. This amount is determined by the factor 
(A2/A1) = exp [ ( F 2 -  F1)/kT]. The concentration 
of the impurity atoms in the matrix at a finite 
(though small) temperature is determined by the 
factors A1 and A2. Bearing this in mind it may 
easily be found that at F~/> 2F1, C1 decreases 
with the increase in T when T is small. On the 
other hand at high T the concentrations of the 
impurity atoms on the sinks tend towards Co from 
above. Hence the function CI(T) at Co>q2 and 
F2/> 2F,  has first a minimum and then a maxi- 
mum as T rises. At F,  < F2 < 2F1 the amount of 
impurity atoms falling onto weakly-binding sinks 
from the strongly-binding ones exceeds the amount 
of the impurity atoms leaving the weakly-binding 
sinks for the matrix. That is why C~(T) increases 
with increasing T from T =  0, attains a maximum 
value at T = Tma~ and tends to Co from above as 
T-+ oo. Analysis of Equation 15 accordingly yields 
(~C1/aT)<O for small T > 0  (at T->0) only if 
F 2 ~  > 2F1. Using Equation 15 one may get an 
equation which determines the position of the 
minimum of the function CI(T) 

[ -1  ~ \1 /2  

(Co . /  q2 r l  --q2)~F~_p.| : ( 1  + q,A,)A~ F~I2F~. 
\ - z - l /  

(16) 
This equation has exact solutions for F2 = 2nF~ 
(n = 1, 2, 3, 4). When qjAx>> 1, unity, in the 
brackets of the right-ha~:d ' part of the last equation, 
may be neglected and so the approximate solution 
of the equation may be also found. Not all the 
solutions will be given but consideration will 
be restricted to the most urgent cases ofqlAa ~ 1. 
In this case we have 

F=,-,rq= ] 
Tl~i. = ~ - , n  [F-~I (Co--q2)=]" (17) 



For example, for carbon impurities in molyb- 
denum (F2/k)= 13913K.  Therefore, reasonable 
values of  Train in such cases may be only found in 
the narrow range o f  Co and q2 near Co = q2. That 
is why at F 2 ~> 1 eV the considered peculiarities 
are actual only at Ca ~ q2. At F 2 <~ 0.1 eV the 
minimum o f  CI(T) may be observed in a more 

wide range of  the parameters Co and q2- 
When Co increases, the content of  the impurity 

on the weakly-binding sink also increases at 
T-+ 0; the position of  the minimum, moving to 
higher temperatures, catches up with the position 
of  the maximum when Co assumes some critical 
value Cg. This critical value may be estimated as 

Cg ~ ql + q,q~/2(F2--F,)/F1. (18) 

At Co> C~, CI(T) decreases monotonically with 
increasing the temperature from T = 0. 

5. Relatively high temperatures 
Let us consider a temperature range which is 
determined by the reverse inequality to Inequality 
12. In this range 

CoAl 
C1 = 

1 - -qz+ql(A 1 -  1) 

x 1 l + ( C o + q 2 ) ( ~ - l ) + q l ( A t _ l  ) . 

(19) 

At high enough temperatures, when qiAi ~ 1, i.e., 
at T>max(FJk x ln-lq~ 1) Formula 19 yields the 
Boltzmann equation, C~ = CoAl. Using Equation 
19 one may also obtain: 

Tmax = F---~21n-1 F1 . (20) 
k (Co + q2)(F2 - - F , )  

6. Conclusions 
It has been shown that at different values of  
Co<>qz and F2/F 1 there are four types of  the 
curves that represent Cx as a function of  T. They 
are all given on Fig. 1. All possible functions, 
C~(T), are such that (3CI/OT) = 0 at T = 0. Three 
out of  the four curves represent functions which 
are not monotonic. They exhibit a maximum at 
T =  Tmax- One of  them has also a minimum at 
T =  Train < Tmax. This may be used to decrease 
the content of  a "harmful" impurity on the grain 
boundaries by the means of  special mechanical 
and thermal treatment. Mechanical treatment is 
necessary to achieve a favourable relationship of  

c, I 

c01 

0 
7" 

Figure I Equilibrium concentratin of the impurity atoms 
on the weakly-binding sink, as a function of temperature 
at (a) C O < q2, (b) q~ < C O < Co,F2 ~> 2F1, (c) q~ < Co < 
C*,F I<F 2 < 2 F  land(d) C o > C * > q 2 .  

ql and q2 to Co. The size of  the grain boundaries 
determines the value of  qx. The density of  dis- 
locations determines the value of  q2- 

7. Numerical evaluations 
Let us consider a metal, containing a relatively 
high density of  dislocations, i.e., about 10 l~ to 
1011 cm -2. This corresponds to a value o f  q2 = 10 -4. 
Let every thousandth crystal atom belong to 
the grain boundary (free-grained material). 
This corresponds to a value of  ql = 10 -3. Let 
Co = 1.05 x 10 -4 , F2 = leV (11605K)  and 
FI  = 0.2eV (2321K). Such values of  the par- 
ameters are characteristic for the light impurities 
in molybdenum. For (F2--F1)/F1 = 4, Equation 
17 yields Train = 700K. At T =  700K, A1 = 27.5, 

A2 = 1.58 x 107 , (Co--q2)A2 = 79.2, 1 +qlAx = 
1.028. All the criteria used to obtain Equation 17 
are satisfied. Equation 17 yields C l ( T m i n )  = 

1 . 6 9 x 1 0  -4 . At T = 0  C I ( 0 ) = S x l 0  -3. The 
critical value Cg = 1.4 x 10 -4. Equation 20 yields 
T m a x = 1 6 3 3 K .  At T = 1 6 3 3 K ,  A 1 = 4 . 1 4 ,  
A2 = 1220, (Co--q2)A2 = 6.1 x 10 -3 , 1 +qlA1 = 
1.004. All criteria used to obtain Equation 20 
are satisfied. Equation 20 yields Cl(Tmax)= 
4.1 x 10 -4. 

Therefore in the considered examples the 
equilibrium impurity content in the grain bound- 
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aries is varying essentially in the temperature 
range where the mobility of  the impurity atoms 
is high enough. 
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